Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Solid State Nucl Magn Reson ; 131: 101935, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38603990

RESUMO

The NMR lineshapes produced by half-integer quadrupolar nuclei are sensitive to 11 distinct fit parameters per inequivalent site. To date, automatic fitting routines have failed to replace manual parameter insertion and evaluation due to the importance of local minima and the need for fitting multiple-field magic-angle spinning (MAS) and static spectra simultaneously. Herein we introduce a new tool, AMES-Fit (Automatic Multiple Experiment Simulation and Fitting), to automatically find the global best-fit simulation parameters for a series of multiple-field NMR lineshapes. AMES-Fit uses an adaptive step size random search algorithm to dynamically probe parameter space and requires minimal human input. The best fits are obtained in a few minutes of computation time that would otherwise have required several person-hours of work. The program is freely available and open-source.

2.
Dalton Trans ; 52(48): 18502-18512, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38015038

RESUMO

The past few decades have seen tremendous growth in the area of single-site heterogeneous catalysis, which aims to combine the best aspects of homogeneous and heterogeneous catalysis, namely molecular-level site control and ease of separation/recycling. Despite this, we still do not have a means of assessing site homogeneity and whether the produced catalyst is indeed a "single-site". Recent developments have enabled the use of NMR-based distance measurements to determine the conformations and configurations of surface sites, leading to the question whether such measurements can be used to distinguish materials containing either single or multiple surface sites with otherwise indistinguishable NMR properties. We describe a Monte Carlo-based multi-structure search algorithm and its application to the determination of multi-site structures from supported metal complexes. The sensitivity of REDOR data to the existence of multiple sites is assessed using synthetic data and prior literature examples are revisited to determine whether the single-site approximation was indeed appropriate. We lastly apply this new methodology to differentiate the configurations of zirconocene complexes grafted onto alumina supports that were thermally treated at different temperatures.

4.
Chem Commun (Camb) ; 59(94): 13962-13965, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37930239

RESUMO

Competing models exist to explain the differences in the activity of zeolites and amorphous silica-aluminas. Some postulate that silica-alumina contains dilute zeolitic bridging acid sites, while others favor a pseudo-bridging silanol model. We employed a selective isotope labeling strategy to assess the existence of Si-O(H)-Al bonds using NMR-based distance measurements.

5.
J Am Chem Soc ; 145(41): 22762-22775, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37813388

RESUMO

The inertness of elemental selenium is a significant obstacle in the synthesis of selenium-containing materials at low reaction temperatures. Over the years, several recipes have been developed to overcome this hurdle; however, most of the methods are associated with the use of highly toxic, expensive, and environmentally harmful reagents. As such, there is an increasing demand for the design of cheap, stable, and nontoxic reactive selenium precursors usable in the low-temperature synthesis of transition metal selenides with vast applications in nanotechnology, thermoelectrics, and superconductors. Herein, a novel synthetic route has been developed for activating elemental selenium by using a solvothermal approach. By comprehensive 77Se NMR, Raman, and infrared spectroscopies and gas chromatography-mass spectrometry, we show that the activated Se solution contained HSe-, [Se-Se]2-, and Se2- ions, as well as dialkyl selenide (R2Se) and dialkyl diselenide (R-Se-Se-R) species in dynamic equilibrium. This also corresponded to the first observation of naked Se22- in solution. The versatility of the developed Se precursor was demonstrated by the successful synthesis of (i) the polycrystalline room-temperature modification of the ß-Ag2Se thermoelectric material; (ii) large single crystals of superconducting ß-FeSe; (iii) CdSe nanocrystals with different particle sizes (3-10 nm); (iv) nanosheets of PtSe2; and (v) mono- and dibenzyl selenides and diselenides at room temperature. The simplicity and diversity of the developed Se activation method holds promise for applied and fundamental research.

7.
J Am Chem Soc ; 145(27): 14660-14669, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37378579

RESUMO

Boron monoxide (BO), prepared by the thermal condensation of tetrahydroxydiboron, was first reported in 1955; however, its structure could not be determined. With the recent attention on boron-based two-dimensional materials, such as borophene and hexagonal boron nitride, there is renewed interest in BO. A large number of stable BO structures have been computationally identified, but none are supported by experiments. The consensus is that the material likely forms a boroxine-based two-dimensional material. Herein, we apply advanced 11B NMR experiments to determine the relative orientations of B(B)O2 centers in BO. We find that the material is composed of D2h-symmetric O2B-BO2 units that organize to form larger B4O2 rings. Further, powder diffraction experiments additionally reveal that these units organize to form two-dimensional layers with a random stacking pattern. This observation is in agreement with earlier density functional theory (DFT) studies that showed B4O2-based structures to be the most stable.

8.
J Am Chem Soc ; 145(26): 14298-14306, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345939

RESUMO

Colloidal chemistry holds promise to prepare uniform and size-controllable pre-catalysts; however, it remains a challenge to unveil the atomic-level transition from pre-catalysts to active catalytic surfaces under the reaction conditions to enable the mechanistic design of catalysts. Here, we report an ambient-pressure X-ray photoelectron spectroscopy study, coupled with in situ environmental transmission electron microscopy, infrared spectroscopy, and theoretical calculations, to elucidate the surface catalytic sites of colloidal Ni nanoparticles for CO2 hydrogenation. We show that Ni nanoparticles with phosphine ligands exhibit a distinct surface evolution compared with amine-capped ones, owing to the diffusion of P under oxidative (air) or reductive (CO2 + H2) gaseous environments at elevated temperatures. The resulting NiPx surface leads to a substantially improved selectivity for CO production, in contrast to the metallic Ni, which favors CH4. The further elimination of surface metallic Ni sites by designing multi-step P incorporation achieves unit selectivity of CO in high-rate CO2 hydrogenation.

9.
Angew Chem Int Ed Engl ; 62(31): e202304844, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222433

RESUMO

The sensitivity of NMR spectroscopy is considerably enhanced by dynamic nuclear polarization (DNP). In DNP polarization is transferred from unpaired electrons of a polarizing agent to nearby proton spins. In solids, this transfer is followed by the transport of hyperpolarization to the bulk via 1 H-1 H spin diffusion. The efficiency of these steps is critical to obtain high sensitivity gains, but the pathways for polarization transfer in the region near the unpaired electron spins are unclear. Here we report a series of seven deuterated and one fluorinated TEKPol biradicals to probe the effect of deprotonation on MAS DNP at 9.4 T. The experimental results are interpreted with numerical simulations, and our findings support that strong hyperfine couplings to nearby protons determine high transfer rates across the spin diffusion barrier to achieve short build-up times and high enhancements. Specifically, 1 H DNP build-up times increase substantially with TEKPol isotopologues that have fewer hydrogen atoms in the phenyl rings, suggesting that these protons play a crucial role transferring the polarization to the bulk. Based on this new understanding, we have designed a new biradical, NaphPol, which yields significantly increased NMR sensitivity, making it the best performing DNP polarizing agent in organic solvents to date.

10.
J Chem Phys ; 158(15)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37093991

RESUMO

The Overhauser effect in the dynamic nuclear polarization (DNP) of non-conducting solids has drawn much attention due to the potential for efficient high-field DNP as well as a general interest in the underlying principles that enable the Overhauser effect in small molecules. We recently reported the observation of 1H and 2H Overhauser effects in H3C- or D3C-functionalized Blatter radical analogs, which we presumed to be caused by methyl rotation. In this work, we look at the mechanism for methyl-driven Overhauser DNP in greater detail, considering methyl librations and tunneling in addition to classical rotation. We predict the temperature dependence of these mechanisms using density functional theory and spin dynamics simulations. Comparisons with results from ultralow-temperature magic angle spinning-DNP experiments revealed that cross-relaxation at temperatures above 60 K originates from both libration and rotation, while librations dominate at lower temperatures. Due to the zero-point vibrational nature of these motions, they are not quenched by very low temperatures, and methyl-driven Overhauser DNP is expected to increase in efficiency down to 0 K, predominantly due to increases in nuclear relaxation times.

11.
J Am Chem Soc ; 145(14): 7992-8000, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995316

RESUMO

Catalytic C-H borylation is an attractive method for the conversion of the most abundant hydrocarbon, methane (CH4), to a mild nucleophilic building block. However, existing CH4 borylation catalysts often suffer from low turnover numbers and conversions, which is hypothesized to result from inactive metal hydride agglomerates. Herein we report that the heterogenization of a bisphosphine molecular precatalyst, [(dmpe)Ir(cod)CH3], onto amorphous silica dramatically enhances its performance, yielding a catalyst that is 12-times more efficient than the current standard for CH4 borylation. The catalyst affords over 2000 turnovers at 150 °C in 16 h with a selectivity of 91.5% for mono- vs diborylation. Higher catalyst loadings improve yield and selectivity for the monoborylated product (H3CBpin) with 82.8% yield and >99% selectivity being achieved with 1255 turnovers. X-ray absorption and dynamic nuclear polarization-enhanced solid-state NMR spectroscopic studies identify the supported precatalyst as an IrI species, and indicate that upon completion of catalysis, multinuclear Ir polyhydrides are not formed. This is consistent with the hypothesis that immobilization of the organometallic Ir species on a surface prevents bimolecular decomposition pathways. Immobilization of the homogeneous IrI fragment onto amorphous silica represents a unique and simple strategy to improve the TON and longevity of a CH4 borylation catalyst.

12.
Chem Commun (Camb) ; 59(31): 4604-4607, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36976550

RESUMO

Obtaining three-dimensional (3D) configurational information of surface organometallic complexes is a persistent challenge due to the low spatial sensitivity of most spectroscopic methods. We show that employing 17O-enriched supports enables highly informative multidimensional NMR experiments, including radial and vertical distance measurements, that can be used to elucidate site geometry.

13.
J Am Chem Soc ; 145(5): 2901-2910, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36696148

RESUMO

C-H/Et-Al exchange in zirconium-catalyzed reactions of saturated hydrocarbons and AlEt3 affords versatile organoaluminum compounds and ethane. The grafting of commercially available Zr(OtBu)4 on silica/alumina gives monopodal ≡SiO-Zr(OtBu)3 surface pre-catalyst sites that are activated in situ by ligand exchange with AlEt3. The catalytic C-H alumination of dodecane at 150 °C followed by quenching in air affords n-dodecanol as the major product, revealing selectivity for methyl group activation. Shorter hydrocarbon or alcohol products were not detected under these conditions. Catalytic reactions of cyclooctane and AlEt3, however, afford ring-opened products, indicating that C-C bond cleavage occurs readily in methyl group-free reactants. This selectivity for methyl group alumination enables the C-H alumination of polyethylenes, polypropylene, polystyrene, and poly-α-olefin oils without significant chain deconstruction. In addition, the smallest hydrocarbon, methane, undergoes selective mono-alumination under solvent-free catalytic conditions, providing a direct route to Al-Me species.

14.
Phys Chem Chem Phys ; 25(7): 5348-5360, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36399032

RESUMO

Dynamics play significant roles in chemistry and biochemistry-molecular motions impact both large- and small-scale chemical reactions in addition to biochemical processes. In many systems, including heterogeneous catalysts, the characterization of dynamics remains a challenge. The most common approaches involve the solid-state NMR measurement of anisotropic interactions, in particular 2H quadrupolar coupling and 1H-X dipolar coupling, which generally require isotope enrichment. Due to the high sensitivity of 1H NMR, 1H chemical shift anisotropy (CSA) is a particularly enticing, and underexplored, dynamics probe. We carried out 1H CSA and 1H-13C dipolar coupling measurements in a series of model supported complexes to understand how 1H CSA can be leveraged to gain dynamic information for heterogeneous catalysts. Mathematical descriptions are given for the dynamic averaging of the CSA tensor, and its dependence on orientation and asymmetry. The variability of the orientation of the tensor in the molecular frame, in addition to its magnitude and asymmetry, negatively impacts attempts to extract quantitative dynamic information. Nevertheless, 1H CSA measurements can reveal useful qualitative insights into the motions of a particularly dilute site, such as from a surface species.

15.
Chem Commun (Camb) ; 58(100): 13939-13942, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36448520

RESUMO

The surface arrangement of motional organic functionalities is explored by experimental dipolar coupling measurements and the prediction of motionally-averaged coupling constant from molecular dynamics simulations. The use of machine learning potentials was key to reaching the timescale required. The distance between dynamic surface species are important in cooperative heterogeneous catalysis.


Assuntos
Imageamento por Ressonância Magnética , Simulação de Dinâmica Molecular , Espectroscopia de Ressonância Magnética , Aprendizado de Máquina
16.
Solid State Nucl Magn Reson ; 120: 101807, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35709566

RESUMO

Due to their high gyromagnetic ratio, there is considerable interest in measuring distances and correlations involving protons, but such measurements are compounded by the simultaneous recoupling of chemical shift anisotropy (CSA). This secondary recoupling adds additional modulations to the signal intensities that ultimately lead to t1-noise and signal decay. Recently, Venkatesh et al. demonstrated that the addition of CSA refocusing periods during 1H-X dipolar recoupling led to sequences with far higher stability and performance. Herein, we describe a related effort and develop a symmetry-based recoupling sequence that continually refocuses the 1H CSA. This sequence shows superior performance to the regular and t1-noise eliminated D-HMQC sequences in the case of spin-1/2 nuclei and comparable performance to the later for half-integer quadrupoles.


Assuntos
Prótons , Anisotropia
17.
J Chem Phys ; 156(12): 124112, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35364862

RESUMO

Solid-state nuclear magnetic resonance can be enhanced using unpaired electron spins with a method known as dynamic nuclear polarization (DNP). Fundamentally, DNP involves ensembles of thousands of spins, a scale that is difficult to match computationally. This scale prevents us from gaining a complete understanding of the spin dynamics and applying simulations to design sample formulations. We recently developed an ab initio model capable of calculating DNP enhancements in systems of up to ∼1000 nuclei; however, this scale is insufficient to accurately simulate the dependence of DNP enhancements on radical concentration or magic angle spinning (MAS) frequency. We build on this work by using ab initio simulations to train a hybrid model that makes use of a rate matrix to treat nuclear spin diffusion. We show that this model can reproduce the MAS rate and concentration dependence of DNP enhancements and build-up time constants. We then apply it to predict the DNP enhancements in core-shell metal-organic-framework nanoparticles and reveal new insights into the composition of the particles' shells.

18.
J Phys Chem Lett ; 13(18): 4000-4006, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35482607

RESUMO

The Overhauser effect is unique among DNP mechanisms in that it requires the modulation of the electron-nuclear hyperfine interactions. While it dominates DNP in liquids and metals, where unpaired electrons are highly mobile, Overhauser DNP is possible in insulating solids if rapid structural modulations are linked to a modulation in hyperfine coupling. Herein, we report that Overhauser DNP can be triggered by the strategic addition of a methyl group, demonstrated here in a Blatter's radical. The rotation of the methyl group leads to a modulation of the hyperfine coupling to its protons, which in turn facilitates electron-nuclear cross-relaxation. Removal of the methyl protons, through deuteration, quenches the process, as does the reduction of the hyperfine coupling strength. This result suggests the possibility for the design of tailor-made Overhauser DNP polarizing agents for high-field MAS-DNP.

19.
Angew Chem Int Ed Engl ; 61(20): e202117279, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35235685

RESUMO

The silylium-like surface species [i Pr3 Si][(RF O)3 Al-OSi≡)] activates (N^N)Pd(CH3 )Cl (N^N=Ar-N=CMeMeC=N-Ar, Ar=2,6-bis(diphenylmethyl)-4-methylbenzene) by chloride ion abstraction to form [(N^N)Pd-CH3 ][(RF O)3 Al-OSi≡)] (1). A combination of FTIR, solid-state NMR spectroscopy, and reactions with CO or vinyl chloride establish that 1 shows similar reactivity patterns as (N^N)Pd(CH3 )Cl activated with Na[B(ArF )4 ]. Multinuclear 13 C{27 Al} RESPDOR and 1 H{19 F} S-REDOR experiments are consistent with a weakly coordinated ion-pair between (N^N)Pd-CH3 + and [(RF O)3 Al-OSi≡)]. 1 catalyzes the polymerization of ethylene with similar activities as [(N^N)Pd-CH3 ]+ in solution and incorporates up to 0.4 % methyl acrylate in copolymerization reactions. 1 produces polymers with significantly higher molecular weight than the solution catalyst, and generates the highest molecular weight polymers currently reported in copolymerization reactions of ethylene and methylacrylate.

20.
Adv Mater ; 34(7): e2105855, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34738260

RESUMO

This is the first report of a multifunctional separator for potassium-metal batteries (KMBs). Double-coated tape-cast microscale AlF3 on polypropylene (AlF3 @PP) yields state-of-the-art electrochemical performance: symmetric cells are stable after 1000 cycles (2000 h) at 0.5 mA cm-2 and 0.5 mAh cm-2 , with 0.042 V overpotential. Stability is maintained at 5.0 mA cm-2 for 600 cycles (240 h), with 0.138 V overpotential. Postcycled plated surface is dendrite-free, while stripped surface contains smooth solid electrolyte interphase (SEI). Conventional PP cells fail rapidly, with dendrites at plating, and "dead metal" and SEI clumps at stripping. Potassium hexacyanoferrate(III) cathode KMBs with AlF3 @PP display enhanced capacity retention (91% at 100 cycles vs 58%). AlF3 partially reacts with K to form an artificial SEI containing KF, AlF3 , and Al2 O3 phases. The AlF3 @PP promotes complete electrolyte wetting and enhances uptake, improves ion conductivity, and increases ion transference number. The higher of K+ transference number is ascribed to the strong interaction between AlF3 and FSI- anions, as revealed through 19 F NMR. The enhancement in wetting and performance is general, being demonstrated with ester- and ether-based solvents, with K-, Na-, or Li- salts, and with different commercial separators. In full batteries, AlF3 prevents Fe crossover and cycling-induced cathode pulverization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...